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Abstract

Under a two-way analysis of variance/covariance model, we consider the
problem of testing the main treatment effect (a fixed effect of primary inter-
est) when the interaction between the treatment and the other factor (which
is either fixed or random) is practically negligible but not exactly zero. Al-
though the theory for analysis of variance/covariance is well-developed (at
least for the fixed effects models), practitioners are not clear on whether the
test based on additive model (assuming no interaction) or the test based on
full model (including interaction terms) should be adopted. The use of ad-
ditive model is motivated by a possible gain in the power of the test. On the
other hand, the use of full model addresses the concern of having an inflated
size of the test when the interaction is not exactly zero. Under balanced fixed
effects models, we show that the test based on additive model has correct
size even if the additive model is wrong but its power may be very low in the
presence of a small interaction effect; contrary to common beliefs, in many
practical situations the gain in power by using the additive approach is not
substantial even if the additive model is correct. Under unbalanced fixed
effects models or balanced/unbalanced mixed effects models, the test based
on additive model generally has an inflated size unless the additive model is
correct.
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1 Introduction

Consider a two-way linear model such as the classical two-way analysis
of variance (ANOVA) model where one factor is the main focus of the study
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(which will be referred to as the main treatment factor) and the other factor
is not of primary interest such as a block effect (which will be referred to
as the secondary factor). In a multicenter clinical trial, for example, the
primary interest is the effect of a drug treatment and the secondary factor
is the center. If there is a large interaction between the main treatment and
the secondary factor, then the assessment and interpretation of the main
treatment effect is difficult. On the other hand, in many applications the
interaction effect is reasonably small and can be ignored although it is not
exactly 0, especially when the secondary factor is a blocking factor and/or
the study is carefully designed and performed. The interaction effect can
be assessed using some statistical tests (e.g., Searle, 1971; Gail and Simon,
1985; Cheng and Shao, 2005). In multicenter clinical trials, assessing the
treatment-by-center interaction is usually the first step in statistical analy-
sis (International Conference on Harmonization (ICH) Guideline E9, 1998).
The main issue addressed in this article is how to test the main treatment
effect after we conclude that the interaction effect is negligible.

Since the interaction effect may not be exactly 0, we may include the
interaction terms in the ANOVA model for testing the main treatment effect.
This is referred to as the full model approach. An alternative is to use an
additive model, i.e., the ANOVA model without any interaction term. This
is referred to as the additive model approach, which is clearly justified if the
interaction effect is exactly 0 (i.e., the additive model is a correct model).
Even if the interaction effect is not exactly 0, some practitioners think that
the additive model approach is more efficient; for example, it is stated in ICH
(1998) that “the routine inclusion of interaction terms in the model reduces
the efficiency of the test for the main effects”. On the other hand, there is a
concern of having an inflated testing size under the additive model approach
when interaction effect is not exactly 0. In multicenter clinical trials, which
approach should be used to test the drug treatment effect is a controversial
issue. More discussions on the design and analysis in multicenter clinical
trials can be found in Fleiss (1986), Källén (1997), Senn (1998), Jones et al.
(1998), Gould (1998), Lin (1999), and Gallo (2000).

Does the test based on the additive model approach have an inflated size
when interaction effect is not exactly 0? This question is not answered in
the existing literature even though the theory of two-way linear model is
well-developed. For the traditional balanced two-way linear models where
the effects of both factors and their interaction are treated as fixed effects,
our answer is no (Section 2), i.e., the test based on additive model still
has the right size even if the additive model is not correct. In this case, the
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comparison of the two approaches should be based on the power. Contrary to
many people’s expectation, our result shows that the test based on additive
model is not substantially more powerful than the test based on full model
when the interaction is exactly or nearly 0. In fact, we show that the test
based on additive model is not unbiased (in the sense that its power may
be lower than the size) and its power can be much lower than the other test
when there is a small but nonzero interaction. When the model is unbalanced,
however, we show that whether the size of the test based on additive model
is inflated depends on which null hypothesis is used.

Mixed effects linear models have received a great deal of attention in
recent years. When there is a large number of centers in a multicenter
clinical trial, centers are often treated as random effects. In Section 3 we
consider mixed effects models where the main treatment effect is fixed but the
secondary factor and interaction effects are random. The result is different
from that in the fixed effects model: the test based on additive model has
an inflated size when the additive model is wrong, regardless of whether the
model is balanced or unbalanced.

In some applications, demographic variables and baseline characteristics
may be useful covariates included in a two-way analysis of covariance (AN-
COVA) model. In Section 4, we extend our results to ANCOVA models. A
summary of our main findings is given in the last section.

2 Two-Way Fixed Effects ANOVA Models

Let yijk denote the kth observation of the ith level of the main treatment
factor and the jth level of the secondary factor. In this section, we consider
the following two-way analysis of variance (ANOVA) model with interaction:

yijk = µ + αi + βj + γij + εijk, i = 1, . . . , I, j = 1, . . . , J,

k = 1, . . . , nij , (2.1)

where εijk are independent and identically distributed normal random vari-
ables with mean 0 and variance σ2, and µ, αi, βj , γij , and σ2 are unknown
parameters. The treatment effect αi, secondary effect βj , and interaction
γij are unknown but fixed and satisfy the usual restrictions ᾱ· = 0, β̄· = 0,
γ̄i· = 0, and γ̄·j = 0, where, for any given variable x, x̄ denotes an average
and a dot is used in the subscript to denote averaging over the indicated
subscript, e.g., x̄· = I−1

∑I
i=1 xi and x̄i· = J−1

∑J
j=1 xij .
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We consider the following hypotheses for the main treatment effect:

H0 : α1 = · · · = αI = 0 versus

H1 : some αi’s are not 0.
(2.2)

When we know that the interaction effect is practically negligible, it is
tempting to use the following additive model:

yijk = µ + αi + βj + εijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij . (2.3)

The use of the additive model (2.3) is clearly suggested in ICH (1998), with
the hope that it increases the power of testing hypotheses (2.2), compared
with the use of the full model (2.1). However, the additive model (2.3) is a
wrong model unless γij = 0 for all i and j and, in practice, treatment-by-
center interaction is rarely zero. Hence, we address the following two issues
in this section:

1. Does the test based on model (2.3) have a wrong size under the full
model (2.1) with nonzero γ-terms?

2. Is the test based on model (2.3) more powerful than that based on the
full model (2.1)?

It is well known that, under the general full model (2.1) with usual restric-
tions, testing hypotheses (2.2) corresponds to the type III analysis (Speed
and Hocking, 1976). Test statistics can be formed using the R( ) nota-
tion as described in Searle (1971) and Speed and Hocking (1976). Define
R(µ, α, β, γ) to be the reduction in the total sum of squares due to fit-
ting model (2.1), R(µ, α, β) to be the reduction in the total sum of squares
due to fitting model (2.3), R(µ, β, γ) to be the reduction in the total sum
of squares due to fitting model (2.1) with αi = 0, R(µ, β) to be the re-
duction in the total sum of squares due to fitting model (2.3) with αi =
0, R(γ|µ, α, β) = R(µ, α, β, γ) − R(µ, α, β), R(α|µ, β, γ) = R(µ, α, β, γ) −
R(µ, β, γ), and R(α|µ, β) = R(µ, α, β) − R(µ, β).

Under the full model approach, the type III test rejects H0 in (2.2) if
and only if

FA =
R(α|µ, β, γ)/(I − 1)

SSE/(N − IJ)
> FI−1,N−IJ,α, (2.4)

where N is the total number of observations, Fm,l,a is the (1− a)th quantile
of the F-distribution with degrees of freedom (m, l), a is a given level of
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significance, and

SSE =
I

∑

i=1

J
∑

j=1

nij
∑

k=1

(yijk − ȳij·)
2.

Under the additive model approach, we reject H0 in (2.2) if and only if

F̃A =
R(α|µ, β)/(I − 1)

[SSE + R(γ|µ, α, β)]/(N − I − J + 1)
> FI−1,N−I−J+1,α. (2.5)

When the model is balanced in the sense that nij = n for all i and j,

R(γ|µ, α, β) = SSAB = n
I

∑

i=1

J
∑

j=1

(ȳij· − ȳi·· − ȳ·j· + ȳ···)
2

and

R(α|µ, β) = SSA = nJ

I
∑

i=1

(ȳi·· − ȳ···)
2.

The test statistic F̃A in (2.5), however, is more comparable with the

type II test statistic R(α|µ,β)/(I−1)
SSE/(N−IJ) under the full model approach, which is

intended for testing the following null hypothesis (Searle, 1971, p. 308):

H0 :
J

∑

j=1

(

nij−
n2

ij

n·j

)

(αi+γij) =
∑

l 6=i





J
∑

j=1

nijnlj

n·j



 (αl+γlj), i = 1, . . . , I−1.

(2.6)
The null hypothesis in (2.6) is the same as the null hypothesis in (2.2) when
the model is balanced; otherwise, they may be different. In multicenter
clinical trials, usually the null hypothesis in (2.2) is tested, not the null
hypothesis in (2.6).

The following result concerns the size and the power of the test rule (2.5)
when model (2.3) is wrong.

Let γ = (γ11, . . . , γI1, . . . , γ1J , . . . , γIJ)′, ‖ ‖ be the Euclidean norm, A′ =
(A′

1, · · · ,A′
J) with

Aj =





















n1j −
n2

1j

n.j
−

n2jn1j

n.j
· · · −

n(I−1)jn1j

n.j

−
n1jn2j

n.j
n2j −

n2
2j

n.j
· · · −

n(I−1)jn2j

n.j

...
...

. . .
...

−
n1jn(I−1)j

n.j
−

n2jn(I−1)j

n.j
· · · n(I−1)j −

n2
(I−1)j

n.j

−
n1jnIj

n.j
−

n2jnIj

n.j
· · · −

n(I−1)jnIj

n.j





















,
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Λ = diag(n−1
11 , . . . , n−1

I1 , . . . , n−1
1J , . . . , n−1

IJ ),

L =

(

J′
J−1

−IJ−1

)

⊗

(

J′
I−1

−II−1

)

.

Further, suppose that Ia denotes the identity matrix of order a, Jb denotes
the b-vector of ones, and ⊗ denotes the Kronecker product for matrices.

Theorem 2.1. Assume model (2.1).

(i) For testing the null hypothesis in (2.6), the test rule (2.5) has exactly
size α.

(ii) For testing the null hypothesis in (2.2), the size of the test rule (2.5)
is at least α and strict inequality holds when

FI−1,N−I−J+1,α < ρ = lim
‖γ‖→∞

γ ′A(A′ΛA)−1A′γ/(I − 1)

γ ′L(L′ΛL)−1L′γ/(N − I − J + 1)
,

(2.7)

(iii) When the model is balanced, H0 in (2.6) is the same as H0 in (2.2)
and, hence, the test rule (2.5) has exactly size α.

(iv) In any case, the test rule (2.5) is not unbiased in the sense that its
power may be lower than α.

Proof. From Searle (1971, formulas (60) and (69) in §7.2), R(α|µ, β) =
ȳ′ATA′ȳ, where

ȳ = (ȳ11., . . . , ȳI1., . . . , ȳ1J., . . . , ȳIJ.)
′

is the vector of cell sample means and T−1 = Var(A′ȳ)/σ2 = A′ΛA. Hence,

R(α|µ, β) = ȳ′A(A′ΛA)−1A′ȳ. (2.8)

Similarly, by Searle (1971, formula (93) in §7.2),

R(γ|µ, α, β) = ȳ′L(L′ΛL)−1L′ȳ. (2.9)

(i) It follows from formulas (2.8) and (2.9) that, under H0 in (2.6), the nu-
merator and denominator of F̃A in (2.5) are independently distributed
as a central chi-square with degrees of freedom I − 1 and a noncentral
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chi-square with degrees of freedom N − I − J + 1 and noncentrality
parameter δ = γ ′L(L′ΛL)−1L′γ/σ2, respectively. Then,

sup
H0 in (2.6) holds

P
(

F̃A > FI−1,N−I−J+1,α

)

= sup
δ

Pδ

(

F̃−1
A < F−1

I−1,N−I−J+1,α

)

= Pδ=0

(

F̃−1
A < F−1

I−1,N−I−J+1,α

)

= α,

where the first equality follows from the fact that F̃−1
A has the noncen-

tral F-distribution with degrees of freedom (N − I − J + 1, I − 1) and
noncentrality parameter δ, the second equality follows from the mono-
tone property of the noncentral F -distribution, and the last equality
follows from F−1

I−1,N−I−J+1,α = FN−I−J+1,I−1,1−α. Thus, the test rule
(2.5) has size α for testing (2.6), even if model (2.3) is wrong.

(ii) Under H0 in (2.2), the numerator and denominator of F̃A in (2.5) are
independently distributed as noncentral chi-square with noncentrality
parameters λ = γ ′A(A′ΛA)−1A′γ/σ2 and δ, respectively. When λ =
δ = 0, P (F̃A > FI−1,N−I−J+1,α) = α. Hence, the size of test rule (2.5)
for testing (2.2) is at least α. Let W be the numerator of F̃A. Then
E(W ) = σ2[1 + λ/(I − 1)] and Var(W ) = σ4[2 + 4λ/(I − 1)]/(I − 1).
Using Chebyshev’s inequality, we can show that W/λ converges in
probability to σ2/(I − 1) as λ → ∞. Similarly, we can show that the
denominator of F̃A divided by δ converges in probability to σ2/(N −
I − J + 1) as δ → ∞. Consequently, F̃A converges in probability
to ρ in (2.7) as ‖γ‖ → ∞. If ρ > FI−1,N−I−J+1,α, then P (F̃A >
FI−1,N−I−J+1,α) → 1 and, therefore, the size of test rule (2.5) for
testing (2.2) is strictly larger than α.

(iii) The result in this part is a consequence of (i), since the null hypotheses
in (2.2) and (2.6) are the same when the model is balanced.

(iv) In general, the numerator and denominator of F̃A in (2.5) are indepen-
dently distributed as noncentral chi-square with noncentrality param-
eters d and δ, respectively, where d = E(ȳ′)A(A′ΛA)−1A′E(ȳ)/σ2.
Thus, the power of the test is a continuous function of δ and d. Denote
this function by φ(d, δ). From the monotone property of the noncentral
F -distribution, φ(0, δ) < φ(0, 0) = α when δ > 0. Since φ is continu-
ous, there exists a d > 0 so that φ(d, δ) < α. This shows that test rule
(2.5) is not unbiased. 2
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Thus, using an additive model when it is in fact wrong does not inflate
the size for testing (2.6) or testing (2.2) when the model is balanced. The
problem of the test rule (2.5), however, is that its power may be lower than
α (not unbiased). In the unbalanced case, the test rule in (2.5) has size α
for testing (2.6), but may have an inflated size for testing (2.2).

Consider testing (2.2), which is usually the main focus in multicenter
clinical trials. From the proof of Theorem 2.1, if ρ > FI−1,N−I−J+1,α, the
size of test rule (2.5) can be arbitrarily close to 1; if ρ = 0 (which holds
when the model is balanced), then the size of test rule (2.5) is α. When
0 < ρ ≤ FI−1,N−I−J+1,α, an explicit form of the size of test rule (2.5)
is difficult to obtain. However, the following example indicates that the
size may still be larger than α. We consider the case where I = 2, J = 3,
(n11, n21, n12, n22, n13, n23) = (9, 8, 8, 9, 5, 4), and (γ11, γ21, γ12, γ22, γ13, γ23) =
(0.5,−0.5, 0.3,−0.3,−0.8, 0.8). At level α = 0.05, ρ = 3.61 < 4.09 =
FI−1,N−I−J+1,α = F1,39,0.05, but our simulation based on 100,000 runs shows
that the size of the test rule (2.5) is at least 0.1089.

We now compare the power of the two tests FA and F̃A in the balanced
case, since in the balanced case they have the same size regardless of whether
the additive model is correct or not. Note that F̃A has a larger denominator
degree of freedom than does FA, which leads to the impression of having
more power. For some values of δ and d (defined in the proof of Theorem
2.1), we computed the ratio of the power of F̃A over the power of FA. The
results for I = 2 and some values of n and J are shown in Figure 1. The
following are our findings.

1. When δ = 0, which is the most favourable case for F̃A, the power ratio
is larger than 1, but is between 1 and 1.10 when (n, J) = (2, 3), be-
tween 1 and 1.05 when (n, J) = (2, 5), and close to 1 in all cases where
n is larger than or equal to 5.

2. The power of F̃A decreases as δ increases (as expected) and the de-
crease is sharper for smaller d values.

3. The difference between FA and F̃A diminishes quickly when any of n,
J , and d is not very small.

Thus, we conclude that (at least in the balanced case with I = 2), using the
additive model does not have a substantial power increase over using the
full model as expected (ICH, 1998). Although its size is not inflated, the
test based on additive model is not recommended because its power can be
substantially low even for a small value of nonzero δ.
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3 Two-Way Mixed Effects ANOVA Models

Consider the two-way mixed effects model

yijk = µ + αi + βj + γij + εijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij ,

βj ∼ N(0, σ2
β), γij ∼ N(0, σ2

γ), εijk ∼ N(0, σ2), (3.1)

βj ’s, γij ’s, and εijk’s are independent,

where µ is an unknown parameter and αi’s are fixed treatment effects sat-
isfying ᾱ· = 0. The hypotheses for treatment effects are given by (2.2),
regardless of whether the model is balanced or not.

Although we consider problems parallel to Section 2, there are some
differences between the results under fixed effects and mixed effects models.

When the model is balanced (nij = n for all i and j), Test rule (2.4) under
the full model approach has a size arbitrarily close to 1, because, under H0 in
(2.2), FA/(1+nσ2

γ/σ2) has the central F-distribution with degrees of freedom
(I − 1, N − IJ) and σ2

γ/σ2 can be arbitrarily large. Thus, a commonly used
unbiased test of size α under the full (balanced) model approach rejects H0

if and only if

SSA/(I − 1)

SSAB/(I − 1)(J − 1)
> FI−1,(I−1)(J−1),α.

When the mixed effects model (3.1) is unbalanced, it is well known that
testing hypotheses (2.2) under the full model approach is difficult, because
none of R(α|µ), R(α|µ, β), and R(α|µ, β, γ) is chi-square distributed, and
none of them is independent of R(γ|µ, α, β). Gallo and Khuri (1990) de-
rived a size α test for hypotheses (2.2) based on the earlier work of Khuri
and Littell (1987). However, the test is complicated because it involves de-
termination of a sequence of orthogonal matrices and computation of the
maximum eigenvalue of some matrix.

Thus, under unbalanced mixed effects models, one may be tempted to
apply the additive model (model (3.1) with σ2

γ = 0) approach which uses test
rule (2.5) for testing (2.2) for its simplicity, regardless of whether the model
is balanced or not. Unlike the result in Section 2, however, the following
result shows that test rule (2.5) has an inflated size when σ2

γ is not exactly
0 unless there is no replicates (nij = 1 for all i and j, in which case the full
model is essentially the same as the additive model).
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Theorem 3.1. Assume model (3.1).

(i) The size of test rule (2.5) for testing (2.2) is

sup
δ≥0

P

(

h(δ) > FI−1,N−I−J+1,α

)

, (3.2)

where

h(δ)

=
e′(Λ + δIIJ)1/2A(A′ΛA)−1

A′(Λ + δIIJ)1/2e/(I − 1)

[χ2
N−IJ +e′(Λ+δIIJ)1/2L(L′ΛL)−1

L′(Λ+δIIJ)1/2e]/(N−I−J+1)
,

(3.3)

χ2
m denotes the central chi-square random variable with degree of free-

dom m, δ = σ2
γ/σ2, e ∼ N(0, IIJ) and is independent of χ2

N−IJ , and
Λ, A and L are defined in (2.8) and (2.9).

(ii) The size in (3.2) is at least α, and it is larger than α if

P

(

e′A(A′ΛA)−1
A′e/(I − 1)

e′L(L′ΛL)−1
L′e/(N − I − J + 1)

> FI−1,N−I−J+1,α

)

> α,

(3.4)
which is further implied by

(I − 1)(J − 1)max{nij}

(N − I − J + 1)min{nij}
FI−1,N−I−J+1,α < FI−1,(I−1)(J−1),α, (3.5)

where Fm,l denotes a random variable having the central F-distribution
with degrees of freedom (m, l).

(iii) When the model is balanced (nij = n for all i and j), the size of test
rule (2.5) is

α̃ = P

(

FI−1,(I−1)(J−1) >
(I − 1)(J − 1)

N − I − J + 1
FI−1,N−I−J+1,α

)

,

which is larger than α when n > 1 and σ2
γ > 0, and equal to α when

n = 1.

(iv) When σ2
γ = 0 (i.e., the additive model is correct), test rule (2.5) has

size α.
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Proof.

(i) Under null hypothesis (2.2), ȳ ∼ N(µJIJ , σ2Λ+σ2
γIIJ +σ2

βIJ ⊗JIJ
′
I).

Since A′
jJI = 0 for j = 1, . . . , J , A′JIJ = (A′

1JI , . . . ,A
′
JJI) = 0

and A′(IJ ⊗ JIJ
′
I) = (A′

1JIJ
′
I , . . . ,A

′
JJIJ

′
I) = 0. From E(A′ȳ) =

µA′JIJ = 0 and Var(A′ȳ) = σ2A′ΛA + σ2
γA

′A,

A′ȳ ∼ N(0, σ2A′ΛA + σ2
γA

′A).

Similarly, since (JI−1,−II−1)JI = 0, we have

L′JIJ = L′(JJ ⊗ JI) = ((JJ−1,−IJ−1)JJ) ⊗ ((JI−1,−II−1)JI) = 0

and L′(IJ ⊗ JI) = ((JJ−1,−IJ−1)((JI−1,−II−1)JI) = 0,

which imply

L′ȳ ∼ N(0, σ2L′ΛL + σ2
γL

′L).

Let e ∼ N(0, IIJ) and be independent of ȳ. By checking the means
and covariance matrix, we conclude that the joint distribution of A′ȳ

and L′ȳ is the same as that of σA′(Λ + δI)1/2e and σL′(Λ + δI)1/2e.
Since SSE ∼ σ2χ2

N−IJ and is independent of ȳ, the distribution of h(δ)
in (3.3) is the same as that of

ȳ′A(A′ΛA)−1
A′ȳ/(I − 1)

[SSE + ȳ′L(L′ΛL)−1
L′ȳ]/(N − I − J + 1)

Then the result follows from (2.8)-(2.9).

(ii) The size in (3.2) is at least P (h(0) > FI−1,N−I−J+1,α), which is equal
to α (see the proof of (iv)). The size in (3.2) is also at least P (h(∞) >
FI−1,N−I−J+1,α). Since

h(∞) ∼
e′A(A′ΛA)−1

A′e/(I − 1)

e′L(L′ΛL)−1
L′e/(N − I − J + 1)

,

(3.4) implies that the size in (3.2) is larger than α. Finally,

e′A(A′ΛA)−1
A′e/(I − 1)

e′L(L′ΛL)−1
L′e/(N − I − J + 1)

≥
min{nij}e

′Λ1/2A(A′ΛA)−1
A′Λ1/2e/(I − 1)

max{nij}e′Λ
1/2L(L′ΛL)−1

L′Λ1/2e/(N − I − J + 1)
,
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which has the same distribution as

(N − I − J + 1)min{nij}

(I − 1)(J − 1)max{nij}
FI−1,(I−1)(J−1),

since L′ΛA = 0 so that e′Λ1/2A(A′ΛA)−1
A′Λ1/2e and

e′Λ1/2L(L′ΛL)−1
L′Λ1/2e are independent chi-square random variables.

Thus, (3.4) is implied by (3.5).

(iii) When the model is balanced,

h(δ) =
(1 + nδ)χ2

I−1/(I − 1)

[χ2
N−IJ + (1 + nδ)χ2

(I−1)(J−1)]/(N − I − J + 1)
,

where χ2
I−1, χ2

N−IJ , χ2
(I−1)(J−1) are independent. Note that h(δ) is an

increasing function of δ with h(0) ∼ FI−1,N−I−J+1 and

h(∞) ∼
N − I − J + 1

(I − 1)(J − 1)
FI−1,(I−1)(J−1).

Then, the size of rule (2.5)

= sup
δ

P (h(δ) > FI−1,N−I−J+1,α)

= P (h(∞) > FI−1,N−I−J+1,α)

= P

(

N − I − J + 1

(I − 1)(J − 1)
FI−1,(I−1)(J−1) > FI−1,N−I−J+1,α

)

= α̃.

Since h(δ) is increasing in δ, α̃ > α when σ2
γ > 0 and n > 1, and α̃ = α

when N − I − J + 1 = (I − 1)(J − 1), i.e., n = 1 (no replicates).

(iv) Since L′ΛA = 0, the numerator and denominator of h(δ) are indepen-
dent when δ = 0 and, therefore, h(0) ∼ FI−1,N−I−J+1. Hence, the size
in (3.2) = α when σ2

γ = 0. 2

Hence, the use of additive model may inflate the size for testing (2.2)
when the additive model is wrong. This is different from the result in The-
orem 2.1 where misusing the additive model does not inflate the size.

In the unbalanced case, the size in (3.2) does not have an explicit form,
because the numerator and denominator of h(δ) in (3.3) are not independent
when δ > 0. Both (3.4) and (3.5) are sufficient conditions under which
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the size of test rule (2.5) is inflated (they are satisfied when the model is
balanced unless n = 1). Condition (3.5) is easier to check. For example,
when I = 2, J = 3 and (n11, n21, n12, n22, n13, n23) = (9, 8, 8, 9, 5, 4), (3.5)
holds. However, we still do not know the magnitude of the size inflation. A
simulation of 100,000 runs shows that the size of test rule (2.5) with α = 0.05
is at least 0.7089. To see that condition (3.5) is only sufficient, we consider
the case where I = 2, J = 4 and all nij ’s are equal to 1 except that n24 = 2.
In this case, condition (3.5) does not hold but the size of test rule (2.5) with
α = 0.05 is at least 0.0966 based on a simulation of 100,000 runs.

When the additive model is correct δ = 0, it is expected that test rule
(2.5) has size α. We provide a proof of such a result (Theorem 3.1(iv)) that
cannot be found in the literature.

4 Two-Way Models With Covariates

In some applications, there are covariates such as demographic variables
and baseline characteristics. Including covariates that are related to the
response variable reduces error variability and, hence, increases the power
of various tests.

We consider the following popular two-way analysis of covariance (AN-
COVA) model:

yijk = µ+αi+βj+γij+η′zijk+εijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij ,
(4.1)

where zijk’s are q-dimensional covariate vectors, η is a q-dimensional un-
known parameter vector, and εijk’s are random errors having a normal dis-
tribution N(0, σ2). The assumptions on αi’s βj ’s, and γij ’s in model (4.1)
are the same as those under the fixed effects model (2.1) or under mixed
effects model (3.1).

Let y be the vector formed by listing yijk in the order of j, i, and k.
Then model (4.1) can be written in the matrix form as

y = Xθ + Zη + ε,

where X is the usual design matrix for the two-way ANOVA model, Z is the
design matrix containing zijk’s, θ = (µ, α1, · · · , αI , β1, · · · , βJ , γ11, · · · , γIJ)′,
and ε is the error vector. The least squares estimator of η is

η̂ = [Z′(I − PX)Z]−1Z′(I − PX)y,
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where PX = X(X′X)−X′ (see Searle, 1971, formula (11) in §8.2). Define

uijk = yijk − η̂′zijk

and

ū = (ū11·, . . . , ūI1·, . . . , ū1J ·, . . . , ūIJ ·)
′,

which can be called the adjusted cell mean vector.

Lemma 4.1. Assume model (4.1) with either fixed effects or mixed effects.
Let SSE be the error sum of squares with yijk’s replaced by uijk’s. Then ū

and SSE are independent.

Proof. Let P(X,Z) denote the projection onto the column space associ-
ated with the matrix (X,Z). Then SSE = ε′(I − P(X,Z))ε. Note that η̂ =

η+[Z′(I − PX)Z]−1
Z′(I − PX)ε. Then η̂ and (I − P(X,Z))ε are independent

since Z′(I − PX)(I − P(X,Z)) = Z′(I − P(X,Z)) = 0. Furthermore, ε̄ij· is in-
dependent of (I − P(X,Z))ε since (I − P(X,Z))PX = PX − P(X,Z)PX = 0.
Then, the result follows from ūij· = µ + αi + βj + γij + (η − η̂)′z̄ij· + ε̄ij·.

Note that ū is normally distributed with covariance matrix

Var(ū) = (V + Λ) σ2

for fixed effects models and

Var(ū) = (IJ ⊗ (JIJ
′
I)) σ2

β + IIJ σ2
γ + (V + Λ) σ2

for mixed effects models,

V = z̄′[Z′(I − PX)Z]−1z̄

and z̄ = (z̄11., . . . , z̄I1., . . . , z̄1J., . . . , z̄IJ.)
′. It can be seen that results in

the previous sections are derived based on the key fact that SSA, SSAB, and
various R’s are quadratic functions of ȳ, which is independent of SSE. Under
the ANCOVA model, the adjusted cell mean vector ū plays the same role
as ȳ. These results and Lemma 1 ensure that the results in Sections 2 and
3 are still applicable to the two-way ANCOVA models with the following
modifications: (i) ȳ should be replaced by ū; (ii) SSE should be defined as
y′(I − P(X,Z))y = ε′(I − P(X,Z))ε; and (iii) the degree of freedom for SSE,
which appears as denominator degree of freedom in some tests, should be
changed from N − IJ to N − IJ − q due to estimation of η. 2



406 Bin Cheng and Jun Shao

5 Summary

Under two-way balanced/unbalanced fixed/mixed effects ANOVA/
ANCOVA models, we address the issue of testing the main treatment ef-
fect (the factor of primary interest) when the interaction effect is practically
negligible but not exactly 0. We study two ways of performing the test, the
additive model approach and the full model approach. Our findings are:

1. When all effects are fixed (non-random) and the model is balanced,
the test based on additive model has correct size even if the additive
model is wrong, but its power may be very low in the presence of a
small interaction effect. Even if the additive model is correct or nearly
correct, the gain in using the additive approach may not be substantial.

2. When all effects are fixed and the model is unbalanced, the test based
on additive model generally has an inflated size for testing hypotheses
(2.2).

3. When the main treatment effects are fixed but the other effects are
random so that the model is mixed-effect, the use of the additive model
results in an inflated size unless the additive model is exactly correct,
regardless of whether the model is balanced or not.

Based on our findings, we recommend the full model approach. The
additive model approach is not suitable under mixed effects models. Under
fixed effects models, the test based on additive model is not recommended
because of its inflated size (under unbalanced models) and/or its low power.

Acknowledgments. We would like to thank the referees for helpful com-
ments and suggestions.
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